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Abstract. We construct and apply to β decays a truly neutral local quantum field that is entirely based
upon momentum space Majorana spinors. We make the observation that theory with momentum space Ma-
jorana spinors of real C parities is equivalent to Dirac’s theory. For imaginary C parities, the neutrino mass
can drop out from the single-β decay trace and reappear in 0νββ, a curious and in principle experimentally
testable signature for a non-trivial impact of Majorana framework in polarization experiments.

PACS. 11.30.Er Charge conjugation, parity, time reversal, and other discrete symmetries – 14.60.St Non-
standard-model neutrinos, right-handed neutrinos, etc.

1 Introduction

The theory of truly neutral fermions is based upon quan-
tum fields that are C eigenstates. In the convention of
ref. [1] the charge conjugation operator reads

C = iγ2K , (1)

with K standing for the operation of complex conjugation.
The calculus of widest use for neutral spin-(1/2) fermions
is based upon a field that is the sum,

νM(x) =
1√
2
(ΨD(x) + ΨD(x)

c) , (2)

of a Dirac quantum field, ΨD(x), and its charge-conjugate,
ΨD(x)

c, [2–4]. This so-called Majorana quantum field (de-
noted by νM(x)) is given by

νM(x) =

∫
d3p

2p0(2π)3/2

∑

h

[
uh(p)ah(p)e

−ip·x

+vh(p) [λa+
h (p)] e

ip·x
]
,

ah(p) =
1√
2

(
bh(p) + d+

h (p)
)
, (3)

where h =↑, ↓ labels spin projection, bh(p), and d+
h (p) are

in turn fermion annihilation and anti-fermion creation op-
erators. The Majorana quantum field constructed in this
way is of real positive C parity,

CνM(x) = νM(x) . (4)

a e-mail: mariana@ifisica.uaslp.mx

A comment on λ is in order, the free phase factor in the
definition of a+

h (p) in eq. (3). It is known as the creation
phase factor , was introduced in [5], and secures that the
phase freedom one has in the choice of the one-particle
states does not show up in the observables, in particular,
does not change the C parity of νM(x). It is also useful in
the construction of a real mixing matrix.

Charged particle currents,

(
b+h (p) + dh(p)

)
ūh(p)γ

µ
(
bh′(p) + d+

h′(p)
)
uh′(p) , (5)

in containing the term, b+h (p)ūh(p)γ
µd+

h′(p)uh′(p), allow
the lepton number to change by two units, |∆L = 2|,
and account for the neutrinoless double-β decay, 0νββ, a
process in which we are particularly interested here. The
resulting 0νββ trace is expressed in terms of momentum
space Dirac spinors, uh(p), and vh(p). Recall, that mo-
mentum space Dirac spinors diagonalize the parity oper-
ator, PR with R standing for space reflection,

Puh(−p) = η∗1uh(p) , Pvh(−p) = η∗2vh(p) . (6)

The spatial parity of the Dirac spinors has been denoted
by η∗j with j = 1, 2 and ηjη

∗
j = 1, and can be either real

or pure imaginary. Dirac spinors with real spatial parity,
P = γ0, correspond to a real mass, and are of common use.
Those with a pure imaginary spatial parity, P = γ0K, cor-
respond to imaginary mass and are ruled out because of
acausal propagation (see ref. [6] for details). To recapit-
ulate, the Majorana quantum field is constructed as an
afterthought of the Dirac quantum field.
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On the other hand, one can have also momentum space

spinors, here denoted by Ψ
h;(εj)
M (p), that have the property

to diagonalize the charge conjugation operator,

iγ2

(
Ψ
h;(εj)
M (p)

)∗
= ε∗jΨ

h;(εj)
M (p), εjε

∗
j = 1, j = 1, 2 .

(7)
Such spinors are referred to as momentum space Majo-
rana spinors [1,3,7–9], and find mentioning in neutrino
oscillations [10,11].

We now ask the question whether C parity spinors
qualify for the construction of a truly neutral local quan-
tum field, and without reference to the Dirac quantum
field, i.e. a field that is distinct from eq. (2). It is the goal
of the present study to design such a field and compare
it to νM(x).

To do so we follow the standard textbook quantization

procedure, and construct as a first step Ψ
h;(εj)
M (p) projec-

tors and propagators. Here we run into the first obstacle.
Because of non-commutativity of γ0 and γ2, eqs. (6) and
(7) cannot be diagonalized by the same set of solutions.
Momentum space Majorana spinors are linear combina-
tions of Dirac uh(p) and vh(p) spinors and satisfy a sys-
tem of two coupled Dirac-like equations. An appropriate
technique to treat propagators resulting from systems of
two coupled spinor equations is to i) first organize the two
spinors in one auxiliary eight-dimensional, (8d), spinor,
ii) then construct associated projectors, iii) next obtain
from them the propagators, and iv) carry out the quanti-
zation procedure, a program realized in sect. 2 below.

We consider two types of solutions to eq. (7), one with
real, the other with imaginary C parities. Naively one
could expect Majorana spinors of imaginary C parity to
propagate acausally, similarly as imaginary spatial par-
ity Dirac spinors. As we shall see below, this is not the
case because for coupled Majorana spinor equations there
is no immediate relation between C parity and causal-
ity. In the auxiliary space we build spinors of real masses
and causal propagators for any C parity of the underly-
ing Majorana spinors, and exploit them for the construc-
tion of local quantum fields. We use these fields in the
calculation of β decays. The (8d) space considered by us
is in its nature auxiliary because physics observables re-
lated to baryon β decays depend on traces, and our (8d)
traces always reduce to four-dimensional traces expressed
in terms of Dirac spinors. At that level we can compare
Majorana and Dirac frameworks. We show that single-β
decays of polarized sources distinguish between Majorana
and Dirac momentum space spinors a result discussed in
sect. 3 below.

The paper is organized as follows. In the next section
we compare Dirac and Majorana momentum space spinors
and obtain coupled equations for Majorana spinors. Sec-
tions 3 and 4 are in turn devoted to single-β and double
0νββ decays. The main text closes with a brief summary.

2 Dirac versus Majorana momentum space

spinors

The generic C parity spinors can be written as

Ψ
h;(εj)
M =




εjξ
∗
1

εjξ
∗
2

ξ1

ξ2


 , ξ∗α = (iσ2)αβ

(
ξβ
)∗

,

ζ̇ =

(
ξ∗1
ξ∗2

)
'
(
1

2
, 0

)
, ζ =

(
ξ1

ξ2

)
'
(
0,

1

2

)
. (8)

Here, ξα and ξ∗β are the complex components of (0, 1/2),

and (1/2, 0), respectively, which in turn correspond to
spinor-, and co-spinor, while iσ2, with σ2 standing for the
second Pauli matrix, plays the role of metric in spinor
space [12]. Note that for charged Dirac spinors, (1/2, 0)
and (0, 1/2) are uncorrelated.

As long as parity and charge conjugation operators in

(1/2, 0) ⊕ (0, 1/2) do not commute, Ψ
h;(±1)
M (p) will be a

linear combination of Dirac’s uh(p) and vh(p) spinors, and
vice versa. The easiest way to find the linear combination
is to solve eqs. (6) and (7) in the rest frame, and com-
pare the solutions. To be specific, we exploit Cartesian
rest frame spinors, here denoted by ζh(0) ' (0, 1/2),

ζ↑(0) =
√
m

(
1
0

)
, ζ↓(0) =

√
m

(
0
−1

)
. (9)

2.1 Momentum space Majorana spinors of real C
parity and symmetric Majorana mass term

For concreteness, we first consider real C parity spinors,
i.e. εj = ±1 in eq. (8). Next we solve eq. (6), for uh(p),

vh(p) and eq. (7) for Ψ
h;(±1)
M (p), respectively, in following

the procedure of ref. [13]. Finally, in comparing spatial to
C parity solutions we encounter the following decomposi-
tion of momentum space Majorana into momentum space
Dirac spinors:




Ψ
↑;(+1)
M (p)

Ψ
↓;(+1)
M (p)

Ψ
↑;(−1)
M (p)

Ψ
↓;(−1)
M (p)


 =

1

2




14 14 −14 14

−14 14 −14 −14

14 −14 −14 −14

14 14 14 −14







u↑(p)
u↓(p)
v↑(p)
v↓(p)


 .

(10)

Notice unitarity of the transformation matrix.
From the last equation one immediately reads off that

Majorana spinors are self-orthogonal. Row by row one
finds,

Ψ
h;(εj)

M (p)Ψ
h;(εj)
M (p) =

∑

h=↑,↓

ūh(p)uh(p)

+
∑

h=↑,↓

v̄h(p)vh(p) = 0 , (11)
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where we used ūh(p)uh(p) = 2m, and v̄h(p)vh(p) = −2m.

Moreover, the Ψ
h;(±)
M (p)’s are cross-normalized according

to

Ψ
↑;(+1)

M (p)Ψ
↓;(−1)
M (p) = Ψ

↓;(+1)

M (p)Ψ
↑;(−1)
M (p) = 2m,

Ψ
↓;(+1)

M (p)Ψ
↑;(−1)
M (p) = Ψ

↑;(−1)

M (p)Ψ
↓;(+1)
M (p) = −2m.

(12)

Self-orthogonality and cross-normalization are unpleasant
properties as they frustrate covariant propagation and lo-
cal canonical quantization (see ref. [6] for technical de-
tails). It is one of the goals of the present study to find a
way out of these problems.

The equation satisfied by the momentum space
Majorana spinors is now determined in subjecting
[(p/−m)⊗ 12]⊕ [(p/+m)⊗ 12] to a similarity transforma-
tion by means of the matrix in the r.h.s. in eq. (10):

1

4




14 14 −14 14

−14 14 −14 −14

14 −14 −14 −14

14 14 14 −14







p/−m 04 04 04

04 p/−m 04 04

04 04 p/+m 04

04 04 04 p/+m




×




14 14 −14 14

−14 14 −14 −14

14 −14 −14 −14

14 14 14 −14




−1

=




p/ 04 04 m14

04 p/ −m14 04

04 −m14 p/ 04

m14 04 04 p/


 .

(13)

The resulting set of equations for momentum space Majo-
rana spinors can be cast into the following block-diagonal
form:




p/ −m14 04 04

−m14 p/ 04 04

04 04 p/ m14

04 04 m14 p/







Ψ
↑;(+1)
M (p)

Ψ
↓;(−1)
M (p)

Ψ
↓;(+1)
M (p)

Ψ
↑;(−1)
M (p)


 = 0 . (14)

Finally, eq. (14) is equivalently rewritten as the following
system of two coupled Dirac equations:

(
p/ ∓m14

∓m14 p/

)(
Ψ
h;(εj)
M (p)

Ψ
−h;(−εj)
M (p)

)
= 0 . (15)

At that stage it is rather instructive to recall the fol-
lowing properties of Dirac spinors:

γ5 uh(p) = vh(p) , γ5 vh(p) = uh(p) , (16)

Cu↑(p) = v↓(p) , Cu↓(p) = −v↑(p) ,

Cv↑(p) = −u↓(p) , Cv↓(p) = u↑(p) . (17)

The insertion of eqs. (16) and (17) into eq. (10) al-
lows to re-express the Majorana spinors as combina-
tions of the left-handed (L), and the charge-conjugate
right-handed (R) Dirac spinors according to

Ψ
↑;(+1)
M (p) = uL

↑ (p)
c + uR

↑ (p) ,

Ψ
↓;(+1)
M (p) = uL

↓ (p)
c + uR

↓ (p) ,

Ψ
↑;(−1)
M (p) = −vR

↑ (p) + vL
↑ (p)

c ,

Ψ
↓;(−1)
M (p) = −vR

↓ (p) + vL
↓ (p)

c . (18)

Here,

uR
h (p) =

1

2
(14 − γ5)uh(p) ,

uL
h(p)

c =
1

2
(14 + γ5) iγ2 u∗h(p) , (19)

are the same classical Majorana spinors that have been
introduced within the context of neutrino oscillations in
refs. [10,11]. The two coupled Dirac-like equations (15)
are now equivalently rewritten to

p/
(
uR
↑ (p) + uL

↑ (p)
c
)
= m

(
−vR

↓ (p) + vL
↓ (p)

c
)
,

p/
(
−vR

↓ (p) + vL
↓ (p)

c
)
= m

(
uR
↑ (p) + uL

↑ (p)
c
)
. (20)

The technique used by us to treat the coupled equa-
tions (15) is to introduce the following complete set of
auxiliary eight-dimensional spinors:

Λl(p) =

(
uL
↑ (p)

c + uR
↑ (p)

αi

(
−vR

↓ (p) + vL
↓ (p)

c
)
)

,

l = 1, 7, α1 = −α7 = 1 ,

Λk(p) =

(
−vR

↓ (p) + vL
↓ (p)

c

αk

(
uL
↑ (p)

c + uR
↑ (p)

)
)

,

k = 2, 8, α2 = −α8 = 1 ,

Λr(p) =

(
uL
↓ (p)

c + uR
↓ (p)

αr

(
−vR

↑ (p) + vL
↑ (p)

c
)
)

,

r = 3, 5, α3 = −α5 = −1 ,

Λs(p) =

(
−vR

↑ (p) + vL
↑ (p)

c

αs

(
uL
↓ (p)

c + uR
↓ (p)

)
)

,

s = 4, 6, α4 = −α6 = −1 . (21)

The advantage of the auxiliary spinors is that they can be
ortho-normalized provided, one exploits the matrix from
the mass term in eq. (15) as a metric in the auxiliary space
and defines Λ̄k(p) as

Λ̄k(p) = [Λk(p)]
+ Γ8 Γ 0, k = 1, . . . , 8,

Γ0 = γ0 ⊗ 12 , Γ8 =

(
04 14

14 04

)
. (22)

With this definition, the norms of the Λj(p) spinors are
obtained as

Λ̄i(p)Λi(p) = +4m, i = 1, 2, 7, 8,

Λ̄j(p)Λj(p) = −4m, j = 3, 4, 5, 6 ,

Λ̄k(p)Λl(p) = 0 , k 6= l . (23)

It is interesting to express Λ̄i(p)Λi(p) in terms of uR
h (p),

uL
h(p)

c, vR
h (p), and vL

h(p)
c. To be specific, for i = 1 we

find

Λ̄1(p)Λ1(p) = −vR
↓ (p)u

L
↑ (p)

c −
(
vR
↓ (p)u

L
↑ (p)

c
)+

+vL
↓ (p)

cuR
↑ (p) +

(
vL
↓ (p)

cuR
↑ (p)

)+

. (24)
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In the standard notations of refs. [10,11], the latter equa-
tion translates into a Majorana mass term with a real
symmetric mass matrix, Γ 8, in the space of states like




νcLh + νR
h

±
(
−ν̄R

−h + ν̄cL−h

)


 , (25)

describing one neutrino-generation.
Equation (23) shows that the auxiliary (8d) space con-

tains equal numbers of spinors of real positive and of real
negative norms, much alike the Dirac space. This advan-
tage allows for a canonical quantization á la Dirac when
introducing the local Ψ{8}(x) field operator as

Ψ{8}(x) =

∫
dV

[ ∑

k=1,2,7,8

Λk(p)ak(p) e
−ip·x

+
∑

j=3,4,5,6

Λj(p)a
+
j (p) e

ip·x

]
. (26)

Here, dV is the appropriate phase volume. This local
quantum field is built on top of momentum space Ma-
jorana spinors and the counterpart of eq. (3). It allows
to calculate β decays in terms of Λi(p) momentum space
spinors.

2.2 Momentum space Majorana spinors of pure
imaginary C parity and anti-symmetric Majorana mass
term

For the momentum space Majorana spinors of pure imag-
inary C parity, ε∗j = ∓i in eq. (8), the transformation
matrix in eq. (10) changes to




14 14 −14 14

−14 14 −14 −14

14 −14 −14 −14

14 14 14 −14


 −→




14 −i14 −14 −i14

i14 14 i14 −14

14 i14 −14 i14

−i14 14 −i14 −14


 .

(27)

As a result, in place of eq. (15), one finds

(
p/ ∓im14

±im14 p/

)(
Ψ
↑;(∓i)
M (p)

Ψ
↓;(∓i)
M (p)

)
= 0 . (28)

In nullifying the determinant of the latter equation, one
obtains the standard time-like energy momentum disper-
sion relation, p2 −m2 = 0, and delivers thereby the proof
that imaginary C parity, contrary to imaginary spatial
parity, does not necessarily imply acausal spinor propaga-
tion. Also these spinors are self-orthogonal

Ψ
h;(∓i)

M (p)Ψ
h;(∓i)
M (p) = 0 , (29)

and cross-normalized according to

Ψ
h;(∓i)

M (p)Ψ
−h;(∓i)
M (p) = ±2im(δh↑ − δh↓) , (30)

a property termed to as bi-orthogonality in refs. [14]. No-
tice that the imaginary cross-norms change sign upon re-
versing the order of the spinors. At the present stage this
may look odd but in the long term it will be of interest in
so far as it will amount to slightly different physics relative
to real C parity Majorana spinors in eq. (8). The coupled
equations (28) have been written down (up to notational
differences) already in ref. [15] by inspection of explicitly
constructed momentum space Majorana spinors.

The complete set of auxiliary (8d) spinors correspond-
ing to eqs. (28) is introduced as

Λτ
1(p) =




uR
↑ (p)∓ iuL

↑ (p)
c

η1

(
uR
↓ (p)∓ iuL

↓ (p)
c
)

 ,

Λτ
2(p) =




uR
↓ (p)∓ iuL

↓ (p)
c

η1

(
uR
↑ (p)∓ iuL

↑ (p)
c
)

 ,

Λτ
3(p) =




−vR
↑ (p)± ivL

↑ (p)
c

η2

(
−vR

↓ (p)± ivL
↓ (p)

c
)

 ,

Λτ
4(p) =




−vR
↓ (p)± ivL

↓ (p)
c

η2

(
−vR

↑ (p)± ivL
↑ (p)

c
)

 ,

τ = ± , η1 = −η2 = 1 . (31)

Defining now Λ̄τ
k(p) as

Λ̄τ
k(p) = [Λτ

k(p)]
+ Γ̃8 Γ 0, Γ̃8 =

(
04 −i14

i14 04

)
, (32)

allows for the construction of an orthogonal basis in the
recent (8d) space as

Λ̄τ
j (p)Λ

τ
j (p) = +4m, τ = +, j = 1, 4 ; τ = −, j = 2, 3

Λ̄τ
k(p)Λ

τ
k(p) = −4m, τ = +, k = 2, 3 ; τ = −, k = 1, 4 ,

Λ̄τ
k(p)Λ

τ ′

l (p) = 0 , τ 6= τ ′ , k 6= l . (33)

In terms of the degrees of freedom in eq. (19), say,
Λ̄−1 (p)Λ

−
1 (p), is expressed as

Λ̄−1 (p)Λ
−
1 (p) = −uL

↑ (p)
cuR
↓ (p) +

(
uL
↓ (p)

cuR
↑ (p)

)+

−uR
↓ (p)u

L
↑ (p)

c +
(
uR
↑ (p)u

L
↓ (p)

c
)+

.(34)

Again, in the standard notations of refs. [10,11], the latter
equation translates into a Majorana mass term with an

imaginary and anti-symmetric mass matrix, Γ̃ 8, in the
space of states of the type




νR
h ∓ iνcLh

±
(
νR
−h ∓ iνcL−h

)


 , (35)

describing one neutrino-generation. Also this space bifur-
cates into equal numbers of spinors with real positive and
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real negative norms, much alike the Dirac space. The ma-

trix Γ̃8Γ0 plays once again the role of the new metric here,
which this time is purely imaginary and anti-symmetric,
which are properties that relate to eq. (30). Also here
canonical quantization á la Dirac is straightforward.

Comparison between eqs. (33) and (23) shows that the
mass matrix in the coupled equations depends on the C
parity, ε∗j , in eq. (8). In case ε∗j is real, the mass matrix is
real and symmetric, while in case ε∗j is pure imaginary, it
is imaginary and anti-symmetric. The above difference re-
flects the difference in the cross-normalization properties
in eqs. (12) and (30), respectively, and will be of pivotal
importance in the calculation of the single-beta decay per-
formed below.

3 Single-β decay with momentum space

Majorana spinors

In order to illustrate the predictive power of models based
upon momentum space Majorana spinors, here we take a
close look at single-β decay. When one considers physical
processes that involve both Dirac and Majorana spinors,
one needs to match single- with coupled-spinor equations.
The simplest way to harmonize dimensions is to amplify
the Dirac spinors in analogy with eqs. (21). In order to
respect orthogonality of P eigenspinors, one has to keep
spin projections the same at top and bottom. The com-
plete set of Dirac eight-spinors introduced in this way is
given by

U(j;h)(p) =

(
uh(p)

ηjuh(p)

)
, V(j;h)(p) =

(
vh(p)

ηjvh(p)

)
,

η1 = −η2 = 1 , (36)

respectively. The metric in the auxiliary Dirac space is
Γ0 = γ0 ⊗ 12. To simplify notations, from now on we
will suppress the momentum, p, as argument of spinors
and operators. First we consider the auxiliary (8d) space
built on top of Majorana spinors of imaginary C parity. In
order to calculate cross-sections, i.e. (8d) current-current
tensors, Gµν , one has next to introduce the eight-currents.
Here we consider the interface Dirac-Majorana current as
the (8d) extension of the Dirac vector current according
to

Jµ
(τ ;k) (j;h) = Λ̄τ

kΓ
µU(j;h) ,

Γµ = γµ ⊗ 12 , k = 1, 2, 7, 8 . (37)

As an illustrative example, below we rewrite, Jµ
(+;1)(1;↑),

in terms of the degrees of freedom in eq. (19) as

Jµ
(+;1)(1;↑) = Λ̄+

1 ΓµU(1;↑)

=
∑

h

uL
hγ

µ
(
uR
−h

)c
+ L↔R .

Mass and four-momentum of the Dirac particle will be
in turn denoted as m1, and p1. The above currents are con-
served in the m→ m1 limit and have the property to take

states U(j;h), of positive norm, to C eigenstates, of posi-
tive norm too. The current-current tensor for Jµ

(τ ;k) ,(j;h),

is calculated to be

Gµν =
1

2

∑

(τ ;k),(j;h)

1

4
Λ̄τ
kΓ

µU(j;h)

(
Λ̄τ
kΓ

νU(j;h)

)+
. (38)

In exploiting the definition of Λ̄τ
k in eq. (33) and making

use of, Γ ν +Γ 0 + = Γ 0Γ ν , one finds

Gµν =
1

2

∑

(τ ;k)

1

4
Λ̄τ
kΓ

µΠDΓ ν Γ̃+
8 Λτ

k ,

4m1Π
D =

(
U(1;↑)U (1;↑) + U(2;↓)U (2;↓)

)

= (m114 + p/1)

(
1 1
1 1

)
. (39)

Converting eq. (39) to trace is now standard and gives

Gµν =
1

4
tr

(
p/γµ −imγµ

imγµ p/γµ

)(
(p/1 +m1)γ

ν (m1 + p/1)γ
ν

(m1 + p/1)γ
ν (p/1 +m1)γ

ν

)

=
1

2
trp/γµ(m1 + p/1)γ

ν . (40)

Therefore, the trace entering the single-β decay width
turns out to be insensitive to the neutral fermion mass,
m, in eq. (28).

The reason for this unexpected phenomenon is
traced back to the anti-symmetric character of the
cross-normalizations in eq. (30), and the coupled equa-
tions (28). The above properties show up in the trace

in the form of the anti-symmetric off-diagonal matrix Γ̃8

which triggers cancellation of the neutral-particle mass.
The drop-out of the neutral-lepton mass from the beta

decay trace in eq. (40) is an interesting though not as
dramatic a phenomenon as the lepton masses affect only
decay traces with polarized β decay sources (nucleon, nu-
clei). Recall that the lepton masses do not show up at all
in the time-like G00,

G00 = 2 (EνEe + pν · pe + Eνpe · σ + Eepν · σ) , (41)

while in the space-like Gii (with i = 1, 2, 3) they enter
only via spin-momentum correlation terms [16].

Had we used momentum space Majorana spinors with
a real C parity, cross-normalization and coupled equations
would be symmetric in accord with eqs. (12) and (15), re-
spectively. In this case the Majorana β decay trace would
have come out identical to the Dirac trace. In summary,
compared to Dirac phenomenology, only momentum space
Majorana spinors of imaginary C parity allow for differ-
ences with respect to single-β decays of polarized sources.

4 The neutrinoless double-beta decay 0νββ

The neutrinoless double-beta decay (0νββ) is a process
where two neutrons in a nucleus, A(Z,N), are converted
into two protons by the emission of two electrons while
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Fig. 1. Neutrinoless double-beta decay schematic representa-
tion.

the two anti-neutrinos close to a virtual internal line (see
fig. 1):

A(Z,N)→ A(Z + 2, N − 2) + e− + e− , (42)

(see ref. [3] for details).
This process is associated with a second-order element

of the S-matrix and the related amplitude, here denoted
by T0νββ , is given by

T0νββ = Wµ W η[ūeγµ(1+γ5)uνe
][ūeγη(1+γ5)uνe

] . (43)

In order to bring in the virtual neutrino line in eq. (43),
one makes use of the following identity:

ūeγη(1 + γ5)uνe
= ((ue)c)

c
γη(1 + γ5) ((uνe

)c)
c

= ūνe
[−γµ(1− γ5)] ve . (44)

The latter expression is obtained by making use of the
relations γ0γ

∗
µ = γµγ0, γ2γµ = −γ∗µγ2, γ

t
µ = −γµ, the anti-

commutation relations between the Dirac matrices, with
“t” labeling the transposed matrix. With that, eq. (43)
takes the form

T0νββ = Wµ W η 1

p2
νe
−m2

νe

Lµη ,

Lµη = ūeγµ(1 + γ5)Π
νe [−γµ(1− γ5)] ve ,

Πνe =
∑

uνe
ūνe

. (45)

Here we suppressed “h” labeling of the Dirac spinors in
order not to overload notations so that

∑
in Πνe

means
summation over spin projections. Finally, |Lµη|2 can be
converted to a trace in the standard way as

|Lµη|2 =
[
ūeγµ(1 + γ5)Π

νe γη(1− γ5) ve

]

[
ūeγλ(1 + γ5)Π

νe γδ(1− γ5) ve

]+

= tr
[
Πueγµ(1 + γ5)Π

νeγη(1− γ5)Π
ve

×γδγ0(1 + γ5)Π
νeγ0(1− γ5)γλ

]

= tr

[
Πueγµ

2mνe

p2
νe

γη(1− γ5)Π
ve

×γδγ0
2mνe

p2
νe

γ0(1− γ5)γλ

]
.

(46)

In the latter equation the squared neutrino mass (m2
νe
)

was neglected compared to the squared neutrino momen-
tum, p2

νe
, with the well-known result

(1 + γ5)Π
νeγη(1− γ5) =

2mνe

p2
νe

γη(1− γ5) . (47)

Now we calculate above trace within the scenario of the
previous section. To do so, one has to perform in eq. (46)
the replacements γµ → Γµ, ue → Ue, ve → Ve, uνe

→
Λ
S/A
k , and

Πνe → 1

2m

(
m14 −ip/
ip/ m14

)(
04 −i14

i14 04

)
. (48)

Our calculation shows that the 0νββ trace contains Γ̃8

2

which is the (8d) identity matrix. In effect, one recovers
eq. (46) and the well-known proportionality of the 0νββ
trace to the square of the neutrino mass. Therefore, the
Majorana calculus does not alter the results of the Dirac
theory of the neutrinoless double-beta decay.

5 Summary

We constructed two types of truly neutral spin-(1/2) quan-
tum fields that differ by the C parity of the underlying mo-
mentum space Majorana spinors, real versus imaginary, a
property that shows up as a difference in the symmetry
of the corresponding Majorana mass matrices —real sym-
metric versus imaginary anti-symmetric. We exploited the
above fields to calculate traces of single- and neutrinoless
double-beta decays. Compared to standard phenomenol-
ogy, the neutrinoless double-beta decay remains unaltered
for both fields. The result extends also to one-gaugino ex-
change as long as the virtual fermion line in fig. 1 can be
also a massive gaugino.

In single-beta decay, we observed a cancellation of the
neutral-fermion mass in the trace, in the case of the Majo-
rana field with the imaginary anti-symmetric mass matrix.

The latter option opens the curious possibility to have
a neutral-fermion theory at hand that allows polarized
tritium β decay [17] to drive the neutrino mass closer to
zero compared to neutrino oscillation, and 0νββ measure-
ments, thus providing an intriguing and in principle ex-
perimentally testable signature for a non-trivial impact of
momentum space Majorana spinors on phenomenology.

This work was supported by the Consejo Nacional de Ciencia y
Tecnologia (CONASyT), Mexico, under grant No. C01-39820.
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